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A three-dimensional computer simulation of a concentrated emulsion in shear flow 
has been developed for low-Reynolds-number finite-capillary-number conditions. Nu- 
merical results have been obtained using an efficient boundary integral formulation 
with periodic boundary conditions and up to twelve drops in each periodically repli- 
cated unit cell. Calculations have been performed over a range of capillary numbers 
where drop deformation is significant up to the value where drop breakup is immi- 
nent. Results have been obtained for dispersed-phase volume fractions up to 30% 
and dispersed- to continuous-phase viscosity ratios in the range of 0 to 5. The results 
reveal a complex rheology with pronounced shear thinning and large normal stresses 
that is associated with an anisotropic microstructure that results from the alignment 
of deformed drops in the flow direction. The viscosity of an emulsion is only a 
moderately increasing function of the dispersed-phase volume fraction, in contrast to 
suspensions of rigid particles or undeformed drops. Unlike rigid particles, deformable 
drops do not form large clusters. 

1. Introduction 
Emulsions are viscous microstructured fluids that arise in a wide range of industrial 

applications including advanced materials processing, waste treatment, enhanced oil 
recovery, food processing, and pharmaceutical manufacturing (Lissant 1984; Friberg 
1976; D’Arrigo 1986; Sjoblom 1992). In these applications, it is often necessary to 
predict or manipulate the rheology of an emulsion or its microstructure. Recently, 
for instance, there has been considerable interest in incompatible polymer blends 
because of the attractive mechanical properties that can be achieved and because of 
the need for recycling plastics (Roetting & Hinrichsen 1994; Teh, Rudin & Keung 
1994). Processing these materials requires a detailed rheological knowledge of their 
emulsified melts and the mechanical properties of the finished products are largely 
determined by the microstructure of their melts. 

In a low-Reynolds-number shear flow, emulsion rheology is determined by the 
volume fraction of the dispersed phase, 4, the dispersed- to continuous-phase viscosity 
ratio, 2, and the capillary number, Ca = ,uju/a, where $ is the imposed shear rate, 
a is the undeformed drop radius, ,u is the continuous-phase viscosity, and o is the 
interfacial tension. The capillary number determines the qualitative importance of 
drop deformation and is evidently a dimensionless shear rate formed from the ratio of 
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deforming viscous stresses to the restoring influence of interfacial tension. Surfactants 
and polydispersity introduce additional parameters that will not be discussed in the 
present article. 

A vast body of literature reflects the active interest in emulsion rheology. Owing 
to the complexity of the problem, however, there has been limited progress towards 
a fundamental basis for understanding and predicting the rheology of concentrated 
emulsions. Instead, empirical correlations have been widely used to predict rheological 
behaviour (e.g. Pal & Rhodes 1985, 1989); as expected, however, they are unreliable 
beyond the original data upon which they are based. Simplified microphysical models 
have also been developed that can provide valuable physical insights (e.g. Schwartz & 
Princen 1987; Doi & Ohta 1991; Das et al. 1992). Unfortunately, detailed calculations 
are unavailable for guiding the development of these models and carefully testing 
the validity of their ad hoc assumptions; the reliability of these models is therefore 
unknown. 

Difficulties encountered in early experimental studies were overcome by Princen & 
Kiss (1989) with a novel experimental procedure for obtaining and interpreting reli- 
able rheological measurements in concentrated emulsions using a wide-gap Couette 
viscometer. In their oft-cited article, Princen & Kiss (1989) outline several specific 
requirements for the Couette viscometer and the finely dispersed test emulsions used 
in their study. They intentionally eliminated the complicating effects of drop defor- 
mation and drop breakup by restricting their study to conditions characterized by 
very small capillary numbers, C a  < lop4. More recently, several other groups have 
used similar procedures to obtain high-quality rheological measurements in concen- 
trated emulsions (e.g. Otsubo & Prud’homme 1994). However, most of these studies 
continue to focus on vanishingly small capillary number conditions where drop de- 
formation is unimportant; unfortunately, the concentrated microemulsions designed 
for experimental studies do not adequately represent all of the emulsions that arise 
in practice. In concentrated emulsions, under conditions where drop deformation is 
significant, interpretation of experimental measurements must rely on untested con- 
jectures (e.g. Benali 1993; Aronson & Petko 1993), phenomenological models (e.g. Doi 
& Ohta 1991), or theories (Choi & Schowalter 1975) and numerical computations (de 
Bruin 1989; Kennedy, Pozrikidis & Skalak 1994) for dilute emulsions. The interpre- 
tation of drop deformation effects on the rheology of a concentrated emulsion is an 
open question. 

A rigorous numerical simulation of concentrated emulsion flow is needed to fully 
and reliably interpret rheological measurements in terms of the detailed emulsion 
microstructure, to broaden the accessible range of conditions that can be used for 
meaningful experimental studies, and to predict the rheology and microstructure 
under conditions that are adverse for experimentation. Numerical simulations would 
also provide an essential tool for guiding the construction of statistical microphysical 
models and a precise instrument to gauge their validity. Recently, several numerical 
descriptions have been developed that focus on various essential aspects of emulsion 
flow. Zinchenko (1984) developed an elegant semi-dilute theory for conditions where 
drop deformation is negligible. Mo & Sangani (1994) used a generalized Stokesian 
dynamics approach to describe the hydrodynamic interactions between fixed random 
configurations of spherical drops in a concentrated emulsion. Zhou & Pozrikidis 
(1993, 1994) constructed numerical simulations using boundary integral calculations 
that describe the flow of a two-dimensional disordered emulsion with deformable 
drops using twelve drops with periodic boundary conditions. Li, Zhou & Pozrikidis 
(1995) and Pozrikidis (1993) performed boundary integral calculations for shear flow 
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of two- and three-dimensional ordered lattices of deformable drops with the same 
viscosity as the continuous-phase fluid. 

The foregoing investigations have revealed a wealth of interesting rheological and 
microstructural features that provide qualitative insights into concentrated emulsions 
which are consistent with certain qualitative observations. These studies motivate 
further effort towards a realistic numerical simulation of concentrated emulsion flow, 
presumably a description that incorporates the essential features of the disordered 
and dynamically changing three-dimensional microstructure. Unfortunately, the fore- 
going simulations are computationally limited according to Pozrikidis (1993); he 
reports that his three-dimensional single-drop calculations require 44 CPU hours on 
a supercomputer even though his results were restricted to transient (strains up to 
4), rather than steady-state behaviour and to the special case of drops with the same 
viscosity as the continuous-phase fluid (2 = 1). Therefore a simple generalization of 
Pozrikidis (1993) is impractical: a description of a disordered emulsion with twelve 
drops per unit cell would require several CPU years on a supercomputer because 
the computation time scales with the number of drops squared and the four-fold 
symmetry for an ordered lattice is lost for disordered configurations. Considerably 
more computation time would be required to obtain steady-state results and results 
for drops with a viscosity different from the continuous-phase fluid (2 # 1). 

In this article, we describe an efficient numerical simulation that incorporates 
a disordered dynamic microstructure, yet circumvents the foregoing computational 
obstacles. Using our simulation, steady-state rheological behaviour can be computed 
for concentrated emulsions with differing disperse- and continuous-phase viscosities 
(A # 1)  in only a few hours on an ordinary workstation using up to twelve drops 
in each periodically replicated cell. The numerical simulation is described in $2, 
numerical results are presented in $3, steady-state results in $4, and concluding 
remarks are given in $5. 

2. Numerical simulation 
2.1. Surface discretization and curvature calculation 

In anticipation of the boundary integral formulation, described below, the interfaces 
of the drops were triangulated by subdividing the edges of an icosahedron into n 
equal segments, thereby forming the subtriangles on each face of an icosahedron as 
shown in figure l ( a ) .  The additional vertices are displaced radially outward onto 
the spherical surface that circumscribes the icosahedron. By this procedure, the drop 
surface is discretized into N = 20n2 flat triangles of roughly equal area. All of the 
;IV + 2 vertices have coordination number 6 except for the evenly spaced icosahedron 
vertices that have coordination number 5. In hindsight, a still better procedure would 
involve interchangeable vertex connections but this has not been implemented nor 
would it be advantageous for most of the simulations that we have attempted. 

The curvature was computed at vertices by the formula 

K-nAS = jA, (V.n)ndA = - jC tdl, 

where IC is the mean curvature, C is the path that passes through the bisectors of the 
triangle edges surrounding a vertex, AS is the area enclosed by C, n is the outward 
normal to the surface, and t is a unit vector that is tangent to the triangle faces and 
perpendicular to C, as depicted in figure l(b). 
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FIGURE 1. Surface discretization and curvature calculation: (a)  subdiscretization of icosahedron 
face ( n  = 4); (b)  line integration for curvature calculation at a vertex. 

We found this procedure for computing curvature simpler to implement and gen- 
erally more accurate than other local methods (e.g. fitting a locally quadratic or 
ellipsoidal surface), as explained below. Global descriptions that involve fitting a 
coordinate system are unattractive because they necessarily result in closely spaced 
collocation points near the coordinate singularities. According to the stability re- 
quirement for time integration, discussed below, this requires proportionally shorter 
time integration steps and longer computation times. The spectral boundary element 
representation of Muldowney & Higdon (1995) is much more accurate but requires 
much longer computation times. 

The separation between vertices is O(1/N1/2) on a surface embedded in three 
dimensions. Errors in the normal vector and integrals of the curvature on elements of 
area AS are only accurate to this order, as (2.1) illustrates because t depends on the 
orientation of a flat triangular face. Formula (2.1) is exact for a sphere but calculations 
for spheroids and more complex spool-shaped (quartic) surfaces reveal that it has an 
average error = 6/N1/2. Generally, other local methods fare slightly worse because 
they are less localized, therefore less able to describe rapid variations in curvature. 
This pessimistic conclusion seems to be an intrinsic feature of curvature calculations 
on surfaces in three dimensions. Fortunately, curvature errors are reduced because of 
the conservation principle that underlies (2.1), as explained at the end of 92.2. The 
use of flat triangular elements introduces a higher-order, O( 1/N) surface-area error; 
evidently, curved boundary elements are an unnecessary refinement. 

According to the boundary integral formulation vertices are convected with the 
local fluid velocity, as implied by (2.6). As a result, a universal difficulty with 
boundary integral calculations is the tendency for the spacing between points to 
become highly irregular after a short simulation time. This effect is slightly lessened, 
but not eliminated, by convecting the points with the normal component of the fluid 
velocity, (u-n)n.  We were able to fully control the grid and eliminate unwanted grid 
distortion by convecting the points with a velocity u = u + w, where u is the fluid 
velocity computed by boundary element calculations, according to (2.3), and w is 
a locally defined tangential ‘velocity’ field that maintains the desired distribution of 
points on the drop surfaces. We defined this tangential velocity field at a vertex x i  by 
a rule involving only vertices directly connected to x‘ 

where h(xJ)  is the minimum distance between d and another drop surface. The 
above rule maintains a uniform grid with a somewhat higher density of points in 
near-contact regions between drop surfaces and on regions of high curvature. The 
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same rule was used for all computations described in this article and, in all cases, 
a well-controlled grid was maintained. However, our experience indicates that the 
precise local rule that defines w’ is unimportant ; careful optimization is unnecessary. 

2.2. Boundary integral formulation 
The velocity was computed at collocation points, taken as the vertices of our dis- 
cretization grid, by a modified version of the second-kind boundary integral formu- 
lation developed by Rallison & Acrivos (1978) and Rallison (198 1) for deformable 
drops. After eliminating the troublesome integrand singularities and generalizing 
their result to M distinct drops periodically replicated in three-dimensional space, the 
result is 

M 1 ( n +  l)u(xo)=2Ca(XZ,O,o,O)+(~.- l)u(xo)-G El’ [(IC(x)--(x*)) G(?).n(x) 
]=I S,(X) 

+ (2 - 1) [u(x)  - u ( x * ) ]  * T(%).n(x)] dx, (2.3) 
where xo is a collocation point on one of the drop surfaces, x ~ , ~  is the coordinate 
in the direction of the velocity gradient as shown in figure 2, and ? = x - xg. 

Equation (2.3) has been made dimensionless using a and o / p  for the characteristic 
length and velocity. The kernel functions G and T are discussed in the following 
subsection. 

Polydisperse effects from drops with different sizes, a,, are incorporated in (2.3). 
Drops with differing viscosities can be accommodated by subscripting the viscosity 
ratio: i, inside the integral term and ;li outside the integral term, where S,(x) contains 
xo. The effect of a short-range interaction potential between drops and the effects 
of drops with different excess densities Ap,,  or different surface tensions oJ can be 
incorporated by simply replacing .(x) in (2.3) with 

f ( x )  = (?) t i ( x )  - (s) APl a: Bo ( g  .x) + H g  [h(x)]  

where g(h)  is a dimensionless short-range function of the local distance to another 
drop surface, h(x) .  The potential parameter H = A/ola:, the Bond number Bo = 
Apla:g/o, ,  and the capillary number Ca = p i / a l / o l  are defined by the physical 
properties of an arbitrarily selected reference drop (labelled 1) and A characterizes 
the strength of the short-range interaction potential. Unfortunately, the tangential 
Marangoni stresses associated with surfactant concentration gradients on the drop 
surfaces cannot be as simply incorporated into the above formulation. In this article, 
we show some results that were obtained using a stabilizing short-range repulsion but 
otherwise do not use these generalizations: a monodisperse neutral density (Bo  = 0) 
emulsion is henceforth assumed. 

According to (2.3), the velocity at each collocation point requires integration over 
every drop surface, j = 1, ..., M within the unit cell. The singularity-subtracted 
formulation was derived using the identities (Pozrikidis 1992, pp. 20,21), 

For integration on the drop surface containing xo, we set x* = xo in (2.3); for 
integration on the remaining drop surfaces, x* is the collocation point on the surface 
that is closesf to -KO. This procedure removes the integrand singularities that arise 
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from small separations between drop surfaces and the singularities on the surface 
that contains the collocation point, XO. Regularizing the integrand by singularity 
subtraction greatly simplifies the numerical integration requirements: surface integrals 
can be performed with integrand evaluations only at the collocation points; the 
contribution from the boundary element containing xo is 0(1/N) and therefore 
negligible at this order. The 0(1/N) error introduced by this simple trapezoid-rule 
surface integration procedure is generally smaller than the error introduced by the 
curvature calculation, discussed in 52.1. Higher-order surface integration rules are 
therefore unnecessary. 

Fortunately, the error introduced by the curvature calculation is reduced by the sin- 
gularity subtraction. As a result of this integrand regularization, velocities computed 
from (2.3) depend on more evenly weighted integrals of the curvature that are more 
accurate because of the conservation principle that underlies (2.1): over an entire drop 
surface, integrals of the curvature vanish exactly because of line integral cancellation. 
Similarly, integrals of the curvature over large regions of a drop surface are accurate 
to 0(1/N) because line integrals in the interior of the region cancel exactly. Using 
formula (2.1), integrals of the curvature over half of an axisymmetric surface have a 
relative error = 5 /N .  

2.3. Ewald-summed Stokeslet and stresslet 
The kernel functions G and T that appear in (2.3) are the Stokeslet and stresslet in 
a triply periodic lattice. They are evaluated by Ewald-summation on the lattice and 
reciprocal lattice of image points : 

(2.5a) 

( 2 3 )  
where 

A(t) = erfc(t) + - (2t2 - 3) ept2 ; B(t) = erfc(t) + 7t1/2 (1 - 2t2) e-t2 ; 
2t 2t 

71112 

4t 
C(t) = 6erfc(t) + - (3 + 2t2 - 4t4) e-” 

71112 

The stresslet T is derived from the Stokeslet G and the latter follows from Beenaker 
(1986). The volume of each unit cell (normalized by the undeformed drop radius) 
is L3; q3L3 is the dispersed-phase volume in each cell. The lattice points are X‘ 
and x1 = x - X I ;  ki are the reciprocal lattice vectors defined such that X’ - ki is an 
integer (postive or negative) multiple of 2n. As indicated, the zero-wavenumber term 
is excluded from the reciprocal lattice sum as a general consequence of the mean 
pressure gradient balancing the mean flow rate, which both vanish in the present 
problem. The lattice deforms continuously during shear flow but, by its periodicity, 
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any lattice configuration can be described by configurations corresponding to strains : 

image points. The above formulae are independent of the convergence parameter, 
4, which controls the relative convergence rates for the sums over the lattice and 
reciprocal lattice; when optimally chosen, both sums converge at equal rates. On a 
cubic lattice, [ = ~ c ' / ~ / L  is optimal (Beenaker 1986) and we found extremely rapid 
convergence using this value for all strains -: < y < i. With this choice, several 
decimal place convergence was always obtained by summing over only two layers on 
the real- and reciprocal-space lattices. 

Unfortunately, the Ewald-summed formulae for G and T are still far too com- 
putationally intensive for large-scale numerical simulations. A much more efficient 
procedure is to subtract the simple free-space Stokeslet and stresslet 

_ _  < y < t ;  at zero strain, the lattice is simple cubic with spacing L between the 

where x is the vector to the nearest periodic replica, and tabulate the computationally 
intensive non-singular functions C - Go and T - T o  on an evenly spaced rectangular 
grid in the four-dimensional region: ( y , x )  with [-+ < y < i] and the three (sheared) 
spatial coordinates in the interval [O, i L ]  which is sufficient by the symmetries of 
these functions and the symmetry of the lattice. Since the tabulated functions G - Go 
and T - T o  are smooth, a linear interpolation gives second-order accuracy. The 
surface integrations in (2.3) were evaluated by adding the interpolated functions 
to the free-space Stokeslet and stresslet which are trivial to compute. The relative 
accuracy of G and T ,  computed by this partial tabulation procedure, is further 
improved because the exactly computed singular functions, Go and T", dominate the 
interpolated functions. We obtained better than 1 % pointwise convergence using 
only 8 interpolation points in each spatial coordinate range [0, i L ]  and 16 points for 
the range of strains [-+, i] . We tested the procedure on a few simulations with only 
one drop per unit cell and 4 = 37%. The results were obtained by tabulation and 
by direct evaluation of (2.5) were indistinguishable and in agreement with Pozrikidis 
(1993); however, the tabulation procedure dramatically reduces the CPU time. In 
simulations with larger M / 4  (more drops per unit cell or lower volume fractions), 
tabulation errors will be smaller because the lattice spacing is larger and drops are 
therefore less influenced by their images in adjacent cells. 

2.4. Numerical solution 
For dynamic simulations, (2.3) must be augmented by continuously updating all of 
the collocation points with the kinematical condition 

where w(xo)  is defined by (2.2). The stability criterion for time integration is (Rallison 
1981) 

where K is an order-one constant and Ax  is the minimum separation between the 
collocation points on any given drop interface which is O( 1/N'/*) for a fairly uniform 
grid; separation between collocation points on diferent drop surfaces does not 
affect stability but the step size must be sufficiently small to avoid surface overlap. 
In agreement with Rallison (1981), we found K = i approximately optimal: our 

At < K A x  (2.7) 
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numerical results were insensitive to smaller values and K = 1 was unstable. A 
second-order Runge-Kutta scheme was used to integrate (2.6), thereby introducing 
a At2 = 0(1/N) time integration error, consistent with the errors resulting from the 
surface integration in (2.3). There is no apparent need to use higher-order time 
integration. 

At each time step, (2.3) was solved iteratively by inserting velocities from one 
iteration into the right-hand side of the equation. Velocities computed at the previous 
time step were used as the initial guess. Depending on the viscosity ratio, only a few 
iterations were required for convergence to lop4 pointwise relative error; the results 
were unaffected by smaller tolerances. For the first time step, u(xo) = 0 was used for 
the initial guess and more iterations were required to solve (2.3). For 1, < 1, somewhat 
faster convergence was obtained by combining the second term on the right-hand 
side of (2.3) with the left-hand side. This procedure results in computation times that 
scale as O ( N  x M ) 2  per time step; matrix inversion is an unattractive alternative that 
increases this estimate to O ( N  x A4)3. Equation (2.3) has eigensolutions that cause 
unphysical changes in the dispersed-phase volume at small viscosity ratios, corrupt 
numerical solutions at large viscosity ratios, and slow the iterative convergence. These 
detrimental effects were eliminated by implementing Wielandt eigenvalue deflation 
(Pozrikidis 1992, pp. 120--127) to purge the solution of these eigenfunctions. 

The bulk stress of an emulsion in shear flow can be expressed as the stress that 
would result from only the continuous-phase fluid and the extra stress that results 
from the dispersed-phase drops (Batchelor 1970) : 

where surfactant-induced Marangoni stresses are neglected, neutral buoyancy is as- 
sumed, and the result is normalized by a/a. To include the effect of a short-range 
potential interaction (or drops with differing surface tensions), K ( X )  must be replaced 
by f(x), defined by (2.4) (with Bo = 0). The continuous-phase fluid contributes only 
to the total shear stress, Ca + 4C12; normal stress differences result entirely from the 
dispersed-phase contribution: 4N1 and 4N2, where N1 = Z ~ I - C ~ ~  and N2 = C22-C33. 

By symmetry, the time average of CI3 = CZ3 = 0 must vanish. 
The significance of (2.8) is effectively illustrated by considering the stress contri- 

bution of the simple capsule-shaped drop defined in figure 2. For 1, = 1, the above 
formula yields 

2 0  

[l - 6D2(3 + D)] 1’3’ 
C12 = :ah sin 2a, N1 = +ah cos 2a; ah = 

where the capsule dimensions a and h, or equivalently, the Taylor deformation and 
orientation, D and x, defined in figure 2, are assumed to be known microstructural 
parameters. Herein, these formulae are only used for crudely predicting the shear 
and normal stress contributions from the average shape and orientation obtained 
from the simulations. Because of its axisymmetry, the capsule shape does not predict 
the smaller, second normal stress difference. These simple formulae are inaccurate at 
larger capillary numbers, close to drop breakup, and they do not describe the effect 
of the dispersed-phase viscosity. Fortuitously, however, the above expressions are 
accurate within a few percent under dilute conditions for A = 1 and Ca d 0.3. 



l wnei I C  rrl wnulrriion of a concentrated emulsion in \hear f l m ~  403 

FIGURF 2 Capsule-shaped drop in  <hear flow constructed from a circular cylinder with hemispherical 
cap5 Sketch defines flow geometr! . i d  Taylor deformation. D, and orientation, r ,  for a drop. 

2.5. Computation specd 
The computational procedure. described above. successfully computes steady-state 
rheological behaviour with modest CPU time on a work station. The computation 
time is dominated by the O ( M  x N)' integrand evaluations needed for the surface 
integrals in (2.3) at each time step, where M is the number of drops used in the 
simulation and N is the number of triangular boundary elements on each drop 
surface; for time steps given by (2.7), the overall CPU time is O(M' x N s / 2 ) .  As 
an example. numerical simulations for @ = 30"/0, Ca = 0.3. and /1 = 1 using 12 
drops per unit cell and 320 boundary elements per drop (figures 5 and 6), proceeded 
at the rate of 17 seconds per time step (2  0.01 strain) on a Hewlett-Packard 9000 
series 735 workstation with a standard optimizing raRTRAiv compiler. The table of 
values for the Stokeslet and stresslet interpolation procedure is computed and stored 
once at the beginning of each simulation: this requires a trivial amount of memory 
(65 kbytes) and negligible C'PU time, equal to about one time step. According to 
the results depicted in figure 6. steady-state results for this case are achieved with 
strains of 10. Steady-state results therefore require less than five hours of workstation 
computing time. In fact, the results depicted in figure 7 indicate that steady-state 
results may even be obtained i n  only one hour o n  a workstation: computation times 
are proportional to M' and. under some conditions, very nearly the same results were 
obtained u$ing only 6 drops per unit cell. For i = 1, (2.3) provides the fluid velocity 
at collocation points explicitly; a more time-consuming iterative solution of (2.3) is 
required for- iL f 1, as described in $2.4. For modest viscosity ratios, i. = 4 or 2, 
computation times were about twice as long; for more extreme values, 1. = b or 5, 
CPU times were approximately four times longer than for the case of equal dispersed- 
and continuous-phase viscosities. 

3. Numerical results 
3.1. Test results 

To successfully simulate the flow of a concentrated emulsion, the calculation procedure 
must be able to describe the interaction of two closely interacting drops as depicted 
in figure 3. Figure 3( a,h) demonstrates that interactions between deformable drops 
tend to increase the cross-flow separation of their centres. According to figure 3(a,c,d), 
the deformation and shear stress contribution of the drops are maximal when the 
drops are pressed together along the compressional axis of the shear flow and 
minimal when they are drawn apart along the extensional axis. Normal stress 
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4 

FIGURE 3. (a) For caption see facing page. 

contributions are maximal when the drops are more aligned with the flow. These 
observations demonstrate the connection between the stress contribution of the drops 
and their geometry (shape and orientation), as implied by (2.8) and illustrated by 
formulae (2.9). 

The results depicted in figure 3(a,b) are consistent with the fact that deformation 
drastically reduces drop coalescence rates. Asymptotic calculations for Ca <. 1 indicate 
that, in the absence of van der Waals attraction, drop deformation prevents drop 
coalescence (Yiantsios & Davis 1991); there are no previous studies for Ca = O(1). 
Figure 3(a) illustrates that uniform collocation grids are maintained on the drop 
surfaces with a higher density of collocation points in the near-contact region and 
on highly curved regions; this is a direct consequence of the tangential redistribution 
velocity, defined by equation (2.2), and it is essential for successfully simulating 
concentrated emulsion flow. 
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FIGURE 3. Sequence of two closely interacting equal drops in an unbounded shear flow; Ca = 0.3, 
1 = 1 ; 320 triangles are used to discretize each drop surface. (a) Collocation grids at four successive 
instants during the interaction and quantitative results as a function of strain: ( b )  cross-flow 
separation of drop centres in the xz-direction; (c) drop deformation; (d) stress contribution of each 
drop to shear stress (solid curve), first normal stress difference (dashed curve), second normal stress 
difference (dotted curve). The numbered 0 points in (b), (c), and ( d )  correspond to the numbered 
sequence illustrated in (a). 

As a test of our three-dimensional boundary integral calculations, we performed the 
axisymmetric calculation for the super-critical capillary number conditions depicted 
in figure 4. We compared our results to those obtained by M. Manga (personal 
communication) using an intrinsically more accurate axisymmetric formulation. At 
modest deformations, our three-dimensional calculations accurately predict the drop 
shape using 320 boundary elements. However, at larger deformations, our calcu- 
lations with the same number of collocation points considerably over-predict drop 
deformation. The error is substantially, but not entirely, reduced by increasing the 
number of boundary elements to 720. Apparently, locally inaccurate curvatures effec- 
tively cancel for modest, but not large, drop deformations. The singularity subtracted 
integrand of (2.3) is a non-singular but rapidly varying function in highly curved 
regions because of its dependence on the local orientation of the surface; the inte- 
gral therefore becomes more sensitive to pointwise curvature values. Equation (2.1) 
tends to smooth out curvature values by its dependence on the adjacent collocation 
points: curvatures and the corresponding capillary pressures they induce are too low 
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FIGURE 4. Isolated drop in uniaxial extension; Ca = 0.2, A = 1 ;  (a )  strain= 1, (b ,c)  strain= 2. 
Solid curves were obtained by axisymmetric calculations of M. Manga (personal communication); 
collocation grid depicts results using 320 triangles (a,b) and 720 triangles (c )  on the drop surface. 

in highly convex regions. As a result, viscous stresses are undercompensated and the 
resulting deformation is too large. The highly elongated boundary elements visible in 
figure 4(b,c), illustrate the shortcoming of a triangulation with static connections at 
high deformations. Fortunately, the drop deformations observed in our simulations 
of concentrated emulsions were smaller than that shown in figure 4(b,c). 

We also tested our calculations against the calculations of Kennedy et al. (1994) 
for an isolated drop in a shear flow at several viscosity ratios. In most cases, 
the results agreed to within the accuracy of reading results from the published 
figures. The only minor discrepancies occurred for large deformations; our results 
predict drop breakup (absence of a stationary shape) at slightly higher capillary 
numbers than those reported by Kennedy et al. (1994). As explained above, our 
curvature calculation procedure systematically yields erroneously large deformations 
and therefore erroneously low critical capillary numbers; we expect that the actual 
critical capillary numbers should exceed our values. We found very close agreement 
to the results of Pozrikidis (1993) for a regular lattice of drops (one drop per unit cell) 
with A = 1, which provided a useful test of our overall procedure for incorporating 
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periodic boundary conditions by partial tabulation of the Ewald-summed Stokeslet 
and stresslet. Our results are consistent with the semi-dilute theory of Zinchenko 
(1984) for Cu = 0, as figure 11 illustrates, but a quantitative comparison was not 
possible. 

3.2. Transient, concentrated emulsion in shear Jrow 
Figure 5 shows the microstructure predicted by our numerical simulation for a concen- 
trated emulsion with 30% dispersed-phase volume fraction; 12 drops were used in the 
unit cell. Figure 6 shows the corresponding drop deformation, orientation, and stress 
contributions. Results are depicted for each of the 12 drops in a unit cell (thin curves); 
volume-averaged (over the unit cell) results are depicted by the thick curves. Figure 5 
clearly shows an anisotropic microstructure of drops that forms after a strain of 10. 
Viewed in the vorticity (Sa )  or velocity gradient direction (5c) ,  the microstructure 
reveals closely spaced drops that are elongated in the flow direction and, to a lesser 
extent, in the vorticity direction. Viewed in the flow direction (5b) ,  however, the mi- 
crostruction is much more open and the cross-section for collisions thereby reduced. 

Under the conditions depicted in figures 5 and 6, the total shear stress in the 
emulsion is only 35% larger than in the continuous-phase fluid at the same shear 
rate and the first normal stress is 85% of the shear stress. In the absence of drop 
deformation, the shear stress in this emulsion would increase by over 80% and the 
first normal stress would be only 2-3% of the shear stress, according to the theory of 
Zinchenko ( 1984). This example demonstrates that drop deformation and alignment 
with the flow dramatically lowers the shear stress and produces very large elastic 
stresses. The microstructure shown in figure S helps to explain why emulsions are 
so strongly shear thinning and have such large normal stresses: the reduced collision 
cross-section of the drops (figure 5b) allows them to glide past each other with 
less resistance and the elongation of the drops in the flow direction produces large 
first normal stress differences. Given the microstructure illustrated in figure 5, these 
qualitative features are consistent with stress contributions of the drops given by 
formulae (2.9). 

According to the heavy curves in figure 6, steady-state rheological behaviour and 
microstructure are attained with strains of 10. This assertion is confirmed by the 
large-strain simulations, y up to 30, depicted in figure 7. Small fluctuations in the 
volume-averaged quatities are a consequence of the finite number of drops used in the 
simulations. By contrast, the instantaneous contributions from the individual drops 
shown by the lighter curves in figure 6,  fluctuate strongly about the mean value, 
without apparent decay. The time-averaged off-diagonal stresses, CI3 and C23 are 
very close to zero as required by symmetry but the contributions from individual 
drops exhibit fluctuations as large as the fluctuations for the other stress components. 
The fluctuations exhibited by individual drops may be qualitatively understood from 
the pair interaction depicted in figure 3 for isolated drops under the same flow con- 
ditions. Interactions between drops in a concentrated emulsion cause fluctuations 
in their shape and orientation that induce fluctuations in their stress contributions, 
as implied by (2.9). A comparison of the results shown in figures 3 and 6 indi- 
cates that fluctuation for drops in a concentrated emulsion are considerably larger 
than for dilute emulsions, probably because drops are forced to squeeze closely past 
each other in  dense systems. Animated sequences from our numerical simulations 
show that the anisotropic microstructure depicted in figure S forms as the emulsion 
flows because interactions between the drops tend to increase their cross-flow sepa- 
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FIGURE 5 .  (a,b) For caption see facing page. 



Numerical simulation of A concentrated emulsion in shear flow 409 

( c )  

FIGURE 5. An emulsion in shear-flow after strain = 10: numerical simulation using 12 equal 
drops (1.5 unit cells are shown) with 320 triangles on each drop surface; 4 = 30%, Ca = 0.3, 
i, = 1; initially the drops are undeformed and randomly located. ( u )  View in the vorticity direction 
(x3-direction), ( b )  view in the flow direction (xl-direction), (c) view in the direction of velocity 
gradient (.uz-direction). 

ration and alignment in the flow direction, qualitatively like the sequence depicted in 
figure 3. 

Most of the results presented in this article were obtained from simulations with 12 
drops per unit cell and the results were compared to those obtained from simulations 
with fewer drops to verify convergence with respect to the number of drops used. 
The volume-averaged results depicted in figure 7 show very similar results obtained 
from three simulations with 12 drops per unit cell (thick curves) and three simulations 
with only 6 drops per unit cell (thin curves). A limited number of simulations using 
an intermediate number of drops and with slight polydispersity gave very similar 
results, eliminating the possibility of apparent convergence resulting from an artifact 
of symmetry. However, numerical simulations with fewer than 4 drops per unit cell 
erroneously predicted drop breakup under the same conditions, demonstrated by 
drop deformation that increases monotonically without attaining a stationary value; 
this result appears to be an artifact of drops interacting closely with their images 
in adjacent unit cells when the unit cell dimension, L = (N/q5)”3, is decreased. By 
contrast, simulations of concentrated rigid-particle suspensions often require a very 
large number of particles for reliable rheological predictions, primarily because of 
particle clustering during flow (Brady & Bossis 1988). Apparently, drop deformation 
suppresses strong correlations that result from cluster formation: geometrical block- 
ages of rigid particles are eliminated by even small deformations of the emulsion 
droplets. 
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FIGURE 6. Results as a function of strain obtained by the simulation described in figure 5 caption: 
(a) drop deformation D, (b)  orientation a, and (c,d) stress contributions of each drop: shear 
stress, Clz (c, solid curves), first normal stress difference, NI (d ,  solid curves), second normal stress 
difference, N2 (d, dashed curves), and asymmetric off-diagonal stress components ,Z13 (c, dashed 
curves), C23 (c, dotted curves). Thin curves depict results for individual drops, thick curves are 
average values for the 12 drops. 

The starting conditions used for our simulations correspond to zero flow and 
disordered microstructure : initially, non-overlapping spherical drops were placed 
at random into the unit cell. Each of the simulations depicted in figure 7 began 
with a distinct, disordered microstructure generated in this way. By comparing 
simulations with the same number of drops, we confirm, from figure 7, that the 
time-averaged rheological and microstructural results are insensitive to their initial, 
random configuration. 

Convergence of the numerical simulation with respect to the surface discretization is 
demonstrated by the results depicted in figure 8 from four simulations using N = 180, 
320, 500, and 720 triangular boundary elements on each drop surface (thicker curves 
correspond to increased N ) .  Extremely crude results are obtained with N = 180. 
Elsewhere in this article, the results were obtained using N = 320; comparing the 
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FIGURE 7. Effect of initial configuration and the number of drops used in simulation; volume- 
averaged results as a function of strain from six simulations with 4 = 30%, Ca = 0.3, A = 1; 
each simulation used a different random initial configuration of drops. Thick curves depict results 
from three simulations with 12 drops (320 triangles on each drop surface); thin curves depict 
results from three simulations with 6 drops. (a )  Average drop deformation and ( b )  orientation, and 
(c) average stress contributions of drops: shear stress (solid curves), first normal stress difference 
(dashed curves), and second normal stress difference (dotted curves). 

results shown in figure 8, we conclude that our results are accurate to about 5%. 
The slow convergence shown by the results depicted in figure 8, particularly for large 
N ,  probably reflects the inherently inaccurate curvature calculation. As explained 
in the previous subsection, curvature errors lead to excessive drop deformation. As 
a consequence, and by a similar relative error, the orientation angle of the drops, 
cc, is too low: the drops orient excessively into the flow direction. The simplified 
expressions (2.9) for the stress contributions of the drops indicate that these errors 
lead to first normal stress differences that are too large by roughly twice the relative 
error in drop deformation (noting that cc < 4.5" always); fortunately, these errors 
tend to cancel for the shear stress contribution of the drops. Figure 8 appears to be 
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FIGURE 8. Effect of surface discretization. Results as a function of strain from three simulations 
with 4 = 30%, Ca = 0.3, /z = 1; each simulation used the same random initial configuration of 6 
drops. Four sets of curves depict results obtained using 180, 320, 500, and 720 triangles on each 
drop surface; faintest curves correspond to 180 triangles per drop and thickest correspond to 720. 
(a) Average drop deformation and ( b )  orientation, and ( c )  average stress contributions of drops: 
shear stress (solid curves), first normal stress difference (dashed curves), second normal stress 
difference (dotted curves). 

consistent with this heuristic argument. The second normal stress difference is also 
more accurately obtained because it depends on deformation in the vorticity direction 
which is modest (figure 56) and therefore more accurately described, as the results in 
figure 4 demonstrate. 

Figure 9 illustrates the effect of an ad hoe short-range repulsive force acting 
between the drops. The repulsive force used for these results was described by (2.4) 
with H = 0.1, 

where ho = 0.1 is the dimensionless interaction range. The results indicate that the 
repulsive force has negligible effect on the rheology of the emulsion; the effect on 
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FIGURE 9. ffect of short-range repulsion. Average stress contributions of the ( ~ o p s  as a . ac t ion  
of strain from two simulations with 4 = 30%, Cu = 0.3, and 7, = 1 ; each simulation used the same 
initial configuration of 12 drops with 320 triangles on each drop surface. Thin curves depict results 
obtained from a simulation with short-range repulsion between the drop surfaces, thick curves were 
obtained without repulsion; shear stress (solid curves). first normal stress difference (dashed curves), 
second normal stress difference (dotted curves). 

the microstructure was similarly negligible. Under low-capillary-number conditions 
(Ca < 0.15), larger strains could be obtained only with a repulsive interaction but 
otherwise it had little effect on the results. At zero capillary number, drop coalescence 
can occur without van der Waals attraction (Zinchenko 1983); thus, the semi-dilute 
theory of Zinchenko ( 1984) invokes an infinitely short-range repulsive interaction 
between the drops. 

4. Steady-state results 
As discussed in $3, the steady-state rheology and microstructure is attained after 

strains of about 10. The steady-state results depicted in figures 10 and 11 were obtained 
by time averaging the results of transient calculations, such as those illustrated in 
figure 7, over a time interval long compared to transient fluctuations after steady-state 
behaviour was attained (e.g. y > 10). Each symbol on the curves shown in figures 10 
and 11 represents a large strain, numerical simulation. 

4.1. Eflect of dispersed-phase i d u m e  fraction 
The results depicted in figure lO(a,b) show that drops deform more and orient 
more into the flow direction as the dispersed-phase volume fraction is increased. 
A comparison of the dilute, pairwise interaction depicted in figure 3(a) and the 
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FIGURE 10. Steady-state results as a function of capillary number for 1 = 1. ( a )  Average steady-state 
drop deformation, ( b )  drop orientation, (c )  shear stress contribution of drops, and ( d )  contribution 
of drops to normal stresses: first normal stress difference (solid curves), second normal stress 
difference (dashed curves); 4 = 0 (0), (p = 10% (O) ,  4 = 20% (*), 4 = 30% (A). 

concentrated flow illustrated in figure 5(a) illustrates this trend. At the terminal 
point of the upwardly concave drop deformation curves, shown in figure 10(a), 
drop breakup seems imminent; average drop deformation increased monotonically 
without attaining a stationary value at larger capillary numbers. The results indicate 
that drop breakup occurs at slightly lower capillary numbers in more concentrated 
emulsions. 

Figure 10(d) indicates that the first normal stress difference increases rapidly with 
shear rate and with increasing dispersed-phase volume fraction. At a dispersed- 
phase volume fraction of 30°/0, the total first normal stress difference, +N1, is nearly 
equal to the total shear stress in the emulsion, C a  + @C12. The latter is a direct 
consequence of the increased drop deformation and alignment that occurs at higher 
volume fractions, according to the simplified formulae (2.9) for the stress contribution 
of the drops. Similarly, the slight flattening of the drops in the vorticity direction, seen 
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FIGURE 11. Steady-state effective shear viscosity contribution of drops, C I 2 / C a ,  as a function of 
capillary number for /I = 1; 4 = 0 (0), 4 = 10% (a), 4 = 20% (*), 4 = 30% (A). Bold symbols 
denote values for Ca = 0 obtained from semi-dilute theory (Zinchenko 1984) 

in figure 5(b), is consistent with the small negative second normal stress differences 
shown in figure 10(d). 

According to figure lO(c), the shear stress contribution of the drops is insensitive 
to the dispersed-phase volume fraction; thus, the shear stress is roughly linear in the 
dispersed-phase volume fraction. This result contrasts with the sharply increasing 
shear viscosity in suspensions of rigid particles or spherical drops with increasing 
volume fraction. This is a consequence of the drop deformation, as the discussion in 
the second paragraph of $3.2 indicates. Figure lO(c) shows strongly shear-thinning 
behaviour, particularly at larger volume fractions. However, the total shear stress 
is a monotonically increasing function of shear rate. Figure 11 shows the effective 
shear viscosity contribution of the drops, CI2 /Ca .  The values for Ca = 0, corre- 
sponding to spherical drops, were obtained from the theory of Zinchenko (1984) 
that is accurate to O(42).  The results show that shear thinning increases consider- 
ably with the dispersed-phase volume fraction. For Ca = 0, the effective viscosity 
contribution of the drops increases by over 50% as the volume fraction is increased 
to 0.3. The shear viscosity contribution of the drops increases with volume frac- 
tion at lower shear rates because of drop collisions; at Ca = 0.25, the viscosity 
contribution of the drops is nearly independent of volume fraction. Shear thinning, 
which results from drop deformation, is enhanced by drop interactions, thus the shear 
viscosity contribution of the drops decreases with volume fraction at higher shear 
rates. 

Zinchenko’s (1984) semi-dilute theory for Ca = 0 also predicts small 0(42) normal 
stresses that are both negative. The values that he reports are much smaller than the 



416 M. Loewenberg and E. J. Hinch 

O ( 4 )  normal stresses predicted for a dilute emulsion of deformable drops (Kennedy et 
al. 1994). For modest capillary numbers, our results predict normal stresses that are 
an order of magnitude larger than the results for moderately concentrated emulsions 
with spherical drops. The discussion in the second paragraph of $3.2 exemplifies this 
point. The discrepancy between Zinchenko’s (1984) semi-dilute zero-capillary-number 
theory and our results in the limit Ca -+ 0 can be attributed to the neglected 0(43)  
(positive) contribution in the dilute theory and the fact that our numerical calculations 
are less accurate at very small capillary numbers. 

4.2. Efect  of dispersed-phase viscosity 
The results depicted in figure 10 indicate that qualitatively similar rheology and 
microstructure is predicted for all volume fractions in the range 0 d 4 < 30%. 
Because of this somewhat unexpected result, we can usefully examine the effect of the 
dispersed-phase viscosity at a fixed dispersed-phase volume fraction. Figure 12 shows 
the results from numerical simulations with viscosity ratios in the range 0 < i < 5 
and the dispersed-phase volume fraction fixed at 10%. 

Our simulations predict qualitatively similar behaviour for il ,< 2. The results 
depicted in figure 12(a,b) show a slight trend towards greater deformation and ori- 
entation with increasing 1, although the results for = 1 and 1 = 2 are almost 
indistinguishable. However, the shear-thinning behaviour is a strong function of 
the viscosity ratio. The first normal stress difference is a very weak function of 
viscosity ratio for 1 < 2 but the results show that the second normal stress dif- 
ference is considerably larger for viscosity ratios smaller than unity. According 
to slender-body theory (Hinch & Acrivos 1980), low-viscosity drops become very 
highly extended before breakup; for il = 0 breakup is theoretically impossible for 
an isolated drop in steady shear flow; however, the effect of transient drop inter- 
actions is unknown. The numerical results depicted in figure 12(a) suggest that 
larger deformations are obtained for smaller viscosity ratios but we are unable to 
quantitatively resolve the question of low-viscosity drop breakup in concentrated 
emulsions. 

Qualitatively distinct behaviour is observed for L = 5. Drop deformation and 
orientation and contributions to the stress tend to stationary asymptotic values at 
large shear rates. Non-shear-thinning Newtonian rheological behaviour is predicted 
at high shear rates. No breakup is predicted for this case, consistent with observations 
(Grace 1982) and numerical results (Kennedy et al. 1994) for an isolated drop with 
il 3 4 in steady shear flow. For a sufficiently viscous drop, the characteristic time 
for drop deformation, (1 + A)pu/o, exceeds the characteristic time for drop rotation, 
l / j  ; hence, the drop rotates from the extensional to the compressional quadrant of 
the velocity gradient before being significantly deformed, and this prevents breakup. 
Apparently, unsteady drop interactions and mutually hindered drop rotation are 
insufficient to induce breakup of more viscous drops at moderate disperse-phase 
volume fractions. 

We obtained qualitatively similar results from numerical simulations with other 
dispersed-phase volume fractions. Compared to the results shown in figure 12, the 
results from simulations with larger volume fractions, up to 30%, indicate that drop 
deformation and orientation have the same trend with respect to i but it is more 
pronounced. Unfortunately, we were unable to obtain results for il = 0 or il = 5 at 
30% volume fraction owing to numerical difficulties. 
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5 .  Concluding remarks 
We have developed a computer simulation for concentrated emulsion flow that can 

describe the steady-state rheology and microstructure. Only modest computational 
resources are needed. Numerical results were presented for the transient and steady- 
state rheology of concentrated emulsions with volume fractions up to 30% and 
dispersed-phase viscosity ratios in the range 0 d A d 5. A complex viscoelastic 
shear-thinning rheology is predicted and related to detailed microstructural features. 
Drop deformation and alignment in the flow direction result in the formation of an 
anisotropic microstructure that reduces the collision cross-section of the drops and 
allows them to glide past each other with less resistance; low shear stresses and large 
normal stresses are the macroscopic manifestation of these phenomena. The viscosity 
of an emulsion was found to be a moderate, approximately linear, function of the 
dispersed-phase volume fraction, at least up to 4 = 30%, unlike the sharply increasing 
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viscosity of suspensions of rigid particles or undeformed drops. The deformation of 
emulsion drops eliminates the geometrical blockages that cause rigid particles to form 
large clusters. 

The accuracy of the numerical procedure has been tested for convergence with 
respect to the number of drops used in each unit cell and the number of boundary 
elements used on each drop surface. The simulation has also been tested against 
several published and unpublished results. We are unaware of experimental results 
suitable for a comparison. Further numerical work should include an improved 
description of the drop interfaces, including an improved curvature calculation and a 
collocation mesh capable of adaptive reconnections. Eventually, a detailed numerical 
simulation that incorporates drop breakup and coalescence may become feasible. 

Hopefully, the work presented in this article will provide a useful tool for developing 
and testing simplified microphysical models of concentrated emulsion rheology. The 
predictions of simplified models should help to design an interesting experimental 
study. Proceeding in this way, a firm basis for understanding and predicting emulsion 
flow should be possible. 

M.L. was supported by a NATO-NSF Fellowship. The computations were sup- 
ported in part by the SERC CSI grant GR/H57585 and in part by the DTI LINK 
programme on colloids. 
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